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Abstract

Monotonicity properties of a general diagnostic model (GDM) are considered in this paper. Simple

data summaries are identified to inform about the ordered categories of latent traits. The findings

are very much in accordance with the statements made about the GPCM (Hemker, Sijtsma,

Molenaar, & Junker, 1996, 1997). On the one hand, by fitting a GDM with equal slopes across

items, the observed total score X+ =
∑

j:qjk=1 xj demonstrates the monotone likelihood ratio

(MLR) property in individual coordinate at the cost of losing model fit. On the other hand,

fitting a GDM without slope restriction increases the model fit but by sacrificing MLR property.

Trade-offs between these two situations should be considered in practice.

Key words: General diagnostic model, monotone likelihood ratio, stochastic ordering of the

manifest variables, stochastic ordering of the latent trait
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1 Introduction

Educational tests are often used to measure the position of students on a latent trait θ.

Suppose that a test consists of J items each with m + 1 ordered categories. The score on item

j is denoted as Xj and its realization is denoted as xj(xj = 0, 1, 2, . . . ,m). If m = 1, items

are dichotomous; if m > 1 the items are polytomous. Under the very mild conditions of latent

trait unidimensionality (UD), local independence (LI) and item response functions that are

nondecreasing functions of θ, the most widely used statistic for estimating θ probably is the

sum score, denoted as X+ =
∑J

j=1 Xj . Note that 0 ≤ X+ ≤ mJ . Although there are some

critiques concerning the use of X+ to estimate the latent trait (Samejima, 2001), X+ is still

useful in communications between professionals and the general public, and it is also useful in

the interpretation of item response models according to simple, monotone relationships between

model components (van der Ark, 2005; Junker & Sijtsma, 2001). For example, Hemker, Sijtsma,

Molenaar, and Junker (1996, 1997) considered in detail the monotone likelihood ratio (MLR)

in the latent trait, stochastic ordering of the manifest sum score (SOM) by the latent trait and

stochastic ordering of the latent trait(SOL) by the manifest sum score. For binary item responses,

it was shown by Grayson (1988) and Huynh (1994) that under the conditions of UD, LI, and

nondecreasing item response functions, the sum score X+ demonstrates the MLR in θ. The MLR

implies SOM and SOL (Lehmann, 1959, p. 74). For polytomous data, Hemker et al. (1997)

demonstrated that the only two models that satisfy the MLR are the partial credit model (PCM;

Masters, 1982) and the rating scale model (RSM; Andrich, 1978), that is, the generalization of

the Rasch model (Rasch, 1960) to polytomous, ordinal data. SOM and SOL are two weaker

monotonicity conditions, and neither of them nor their combinations imply MLR (Junker, 1993).

SOM is satisfied by all unidimensional polytomous models, and SOL usually does not hold for

them in general. Little is known about the monotonicity properties for multidimensional models

for polytomous data. In this paper, all three properties are considered for a multidimensional

polytomous model. Additionally, the monotonicity condition proposed by Junker and Sijtsma

(2001) is also considered.

The organization of this paper is as follows: a general multidimensional polytomous model is

introduced in Section 2. The monotonicity properties are discussed for this model in Section 3.

Finally, a brief discussion follows to direct subsequent data analysis activities.
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2 General Diagnostic Model

The general diagnostic model (GDM; von Davier, 2005; von Davier & Yamamoto, 2004) is a

multidimensional extension of the PCM (Masters, 1982). The PCM has the following response

function

Pj(Xj = x|θ) =
exp[xθ + βxj ]

1 +
∑m

y=1 exp[yθ + βyj ]
.

von Davier and Yamamoto decomposed the unidimensional latent trait into an item-dependent

linear combination of K underlying traits α = (α1, α2, . . . , αK),

P (Xj = x|α) =
exp[βxj +

∑K
k=1 xγjkqjkαk]

1 +
∑m

y=1 exp[βyj +
∑K

k=1 yγjkqjkαk]
,

with dichotomous design matrix qjk, j = 1, . . . , J and k = 1, . . . ,K. This model makes it clear

that P (Xj = x|α) is coordinate-wise monotone in α, if γjk > 0. If each underlying trait only

takes several discrete values specified in advance, the model becomes a cognitive diagnostic model

that can be used to identify students’ skill mastery status. In some of the following sections,

the continuous underlying traits are used to study the monotonicity properties. Because the

cognitive diagnostic model is a special case for this general model, the statements from continuous

underlying traits remain valid for the cognitive diagnostic model as well.

3 Stochastic Ordering Properties

3.1 Monotone Likelihood Ratio

Let X+ be the observed total score on the test. The likelihood ratio in the latent traits α is

defined as

g(D,C;α) =
P (X+ = D|α)
P (X+ = C|α)

,

where 0 ≤ C < D ≤ mJ . The MLR of X+ in α holds for the GDM when the likelihood ratio is

an increasing function of each coordinate αk. Little is known about it. A weaker property related

to the MLR is that this likelihood ratio is a nondecreasing function of individual latent trait αk.

Analogous to the derivations in Hemker et al. (1996), the MLR of X+ in αk holds if and only if

RD∑
µ=1

RC∑
ν=1

(
J∑

j=1

[
π

′

jx(µ)

πjx(µ)
−

π
′

jx(ν)

πjx(ν)
]

J∏
j=1

πjx(µ)πjx(ν)) ≥ 0,

where RD and RC are the numbers of score vectors that yield X+ = D and X+ = C respectively.

Here x(µ) and x(ν) denote realizations of vectors that yield X+ = D and X+ = C, respectively.
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Denote πjx = P (Xj = x|α), then πjx(µ) is the probability function of item j in vector x(µ), and

π
′

jx(µ) is the derivative of this function with respect to αk. The same explanation applies to πjx(ν)

and its prime π
′

jx(ν). Straightforward algebra shows that:

∂lnπjx

∂αk
=

π
′
jx

πjx
= xjγjkqjk −

∑m
y=1 exp[βyj +

∑K
k=1 yγjkqjkαk]yγjkqjk

1 +
∑m

y=1 exp[βyj +
∑K

k=1 yγjkqjkαk]
.

The summation of this ratio across all J items produces

J∑
j=1

π
′
jx

πjx
=

J∑
j=1

xjγjkqjk −
J∑

j=1

∑m
y=1 exp[βyj +

∑K
k=1 yγjkqjkαk]yγjkqjk

1 +
∑m

y=1 exp[βyj +
∑K

k=1 yγjkqjkαk]
.

Since the second term of the right side does not depend on data, we have

J∑
j=1

[
π

′

jx(µ)

πjx(µ)
−

π
′

jx(ν)

πjx(ν)
] =

J∑
j=1

γjkqjk(xj(µ) − xj(ν)).

It is observed that only the items that require the attribute k contribute to this summation.

Because the derivative of g(D,C;α) with respect to αk depends on D and C only through the

scores of those items who require the attribute k, the total score in the likelihood ratio should be

the total score for those items (i.e. X+ =
∑

j:Qjk=1 Xj). If γjk has the same value for all items

(i.e. γjk = γk > 0), then the MLR of X+ in αk holds. This can be easily seen that the equation

above becomes
J∑

j=1

[
π

′

jx(µ)

πjx(µ)
−

π
′

jx(ν)

πjx(ν)
] = γk

∑
j:qjk=1

(xj(µ) − xj(ν)) > 0

for all RD ∗RC possible combination of x(µ) and x(ν). If γjk varies over items, the GDM does not

in general imply the MLR of X+ in αk. In practice, the inferences towards each individual latent

trait are often of interest, so we will focus on discussions of monotone properties in individual

latent trait. Three weaker monotone properties are considered in the following.

3.2 Stochastic Ordering of Manifest Variables

Since the GDM satisfies local independence, monotonicity and low dimensionality, it follows

immediately from Lemma 2 of Holland and Rosenbaum (1986) that SOM (Hemker et al., 1997)

holds for the GDM. That is, P (X+ ≥ x+|α) is nondecreasing in each coordinate αk. Note that

X+ is the total score of the test. Direct derivation makes this clear. Analogous to the derivation

in Hemker et al. (1997), the derivative of P (X+ ≥ x+|α) with respect to individual αk can
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also be expressed as a sum of positive products where each product consists of one derivative

P
′
(Xj ≥ x|α) with respect to αk and J − 1 probabilities of the form πix,i 6= j:

P
′
(Xj ≥ x|α)

J∏
i6=j

πix.

For the GDM model, the derivative P
′
(Xj ≥ x|α) ≥ 0 needs to be shown. For notational

convenience, let Ux = exp[βxj +
∑

k xγjkqjkαk], and then the cumulative response function for

item j in the GDM model can be expressed as

P (Xj ≥ x|α) =
Ux + . . . + Um

1 + U1 + U2 + . . . + Um
, x = 0, 1, . . . ,m.

Direct algebra shows that

∂ lnP (Xj ≥ x|α)
∂αk

=
P

′
(Xj ≥ x|α)

P (Xj ≥ x|α)

=
U

′
x + U

′
x+1 + . . . + U

′
m

Ux + Ux+1 + . . . + Um
−

∑m
s=1 U

′
s∑m

s=1 Us

= γjkqjk[
∑m−x

t=1 Ux+tt

Ux + . . . + Um
+ x−

∑m
s=1 Uss

1 +
∑m

s=1 Us
]

= γjkqjk[
∑m−x

t=1 Ux+tt

Ux + . . . + Um
+

x−
∑m−x

t=1−x Ut+xt

1 +
∑m

s=1 Us
]

= γjkqjk[
x−

∑0
t=1−x Ux+tt

1 +
∑

s=1 Us
+ (

1
Ux + . . . + Um

− 1
1 +

∑m
s=1 Us

)
m−x∑
t=1

Ux+tt].

The first term in the bracket is positive, and the second term is nonnegative. So ∂ ln P (Xj≥x|α)
∂αk

> 0,

and consequently ∂P (Xj≥x|α)
∂αk

> 0. Thus, SOM holds for the coordinate αk. In fact, this is

true for every αk since the summation in the bracket is always positive. This is also true for a

more restrictive sum score X+ =
∑

j:QjkXj
. It is observed that item j will not be counted in

this derivative if qjk = 0, thus indicating that only those items with qjk 6= 0 are taken into the

calculation of X+.

3.3 Stochastic Ordering of Latent Variables

Little is known about the SOL (Hemker, et. al, 1997) – P (α1 > c1, . . . , αK > cK |X+ = x)

when the latent trait is multidimensional. A weaker property related to SOL is that for any two

values of αk, z1 > z2, the ratio

r(z1, z2) =
P (αk = z1|data, α1, . . . , αk−1, αk+1, . . . , αK)
P (αk = z2|data, α1, . . . , αk−1, αk+1, . . . , αK)
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is nondecreasing in X+ =
∑

j:qjk=1 Xj , with all other parameters fixed. First, let π01 and π02

be the prior distributions αk = z1 and αk = z2, respectively. The posterior odds of αk = z1 to

αk = z2 is

r(z1, z2) =
π01

π02

J∏
j=1

m∏
t=1

{
exp[tγjkqjk(z1 − z2)]

1 +
∑m

y=1 Cy
k exp(yγjkqjkz2)

1 +
∑m

y=1 Cy
k exp(yγjkqjkz1)

}I[xj=t]

.

Here, Cy
k = exp[βyj +

∑K
l 6=k yγjlqjlαl]. For an item with qjk = 0, the score on that item does not

count in the odds ratio since the ratio is 1 no matter what score it gets. Since the second part in

the bracket does not depend on data, it will be cancelled out in the odds ratio. Let X(S) and

X(T ) be the response vectors to yield total score S and T with S > T . X(S)j and X(T )j are the

responses to the item j in the vector X(S) and X(T ), respectively. The odds ratio of these two

response vector is

r(z1, z2;S)
r(z1, z2;T )

= exp (z1 − z2)
∑

j:qjk=1

[γjk(X(S)j −X(T )j)].

If γjk = γk, the odds ratio depends completely on the total score on those item who require the

kth attribute. That is, the posterior odds ratio for each coordinate αk is nondecreasing by this

total score, and consequently, SOL holds. If γjk varies over items, SOL does not in general hold

for this model.

3.4 Junker and Sijtsman’s Property

Finally, a new type of monotonicity condition seems worthy of studying for the GDM. In a

standard unidimensional IRT model, a higher level of the latent trait is associated with a higher

probability of correct response. A corresponding property for the a cognitive diagnostic model

could be the relationship between the number of task-relevant attributes the examinee masters

and the probability of correct task performance (Junker & Sijtsma, 2001). This might require that

the item response function in GDM model be nondecreasing in mij =
∑K

k=1 αkqjkγjk. The odds

for scores x1 > x2 is calculated as

h(x1, x2) =
P (Xj = x1|α)
P (Xj = x2|α)

= exp[βx1j − βx2j + (x1 − x2(
∑

k

γjkqjkαk))].

Since the first term in the exponent will cancel out in the odds ratio of two different realizations

of α, the odds ratio over different realizations of α: α(1) and α(2), is

h(x1, x2;α(1))
h(x1, x2;α(2))

= exp (x1 − x2)
∑

k:qjk=1

γjk(α(1)k − α(2)k),
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where α(1) and α(2) represent two vector of possible realization of α. If γjk = γj , the odds ratio

is nondecreasing as the difference on the scores of task-relevant attributes increases. However,

when γjk varies over the task-relevant attributes, this monotonicity does not hold in general.

4 Discussion

Relating the latent traits to simple and useful data summaries is important when

communicating to the public. For example, SOL (Hemker et al., 1997) was considered, which

asserted that the higher score on the items that require latent attribute k, the easier it is to get

a higher category in this attribute. For inference on the latent traits, SOL by the sum score is

more useful than SOM of the sum score. The MLR is more stringent than these two. When

γjk = γk, the MLR holds and this implies that both SOM and SOL hold for GDM model. In

general, MLR does not hold for GDM because γjk varies over items. The same is true for the SOL

property. These statements are very much in accordance with those of the GPCM (Hemker et

al., 1996, 1997; see Table 1). Under the GDM, similar to the GPCM, some weighted sum score∑
j:qjk=1 γjkxj , not

∑
j:qjk=1 xj , has the MLR property. By fitting a stringent GDM with equal

slope across items, the observed total score X+ =
∑

j:qjk=1 xj has the MLR property. However, the

model fit might be lost. By fitting the GDM without the slope restriction,the model fit increases,

but the MLR property is sacrificed. In practice, a trade-off is necessary between these two choices.

Table 1

Monotonicity Properties of Models

Properties Rasch, PCM, RSM, 2PL/3PL, GPCM GDM with equal slope GDM

SOM X X X X

SOL X X

MLR X X

As mentioned above, SOL generally does not hold for the GDM. However, it is not clear how

seriously the violation of SOL will affect the inference of the latent traits in a fitted model. It is

incumbent on GDM model users to check that SOL holds in the fitted model before asserting that

a higher sum score corresponds to a higher category in the latent traits. A step in future research

might be a thorough simulation study to show the severeness of this violation.
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